Feeds:
Posts

## Galilean Relativity and Electrodynamics

Quite a few months ago now I derived the so-called Galilean transformations, which allow us to relate one frame of reference to another in the case of Galilean Relativity.

$\boxed {\begin{array}{lcl} x^{\prime} & = & x + vt \\ y^{\prime} & = & y \\ z^{\prime} & = & z \\ t^{\prime} & = & t \end{array} }$

It had been shown that for experiments involving mechanics, the Galilean transformations seemed to be valid. To put it another way, mechanical experiments were invariant under a Galiean transformation. However, with the development of electromagnetism in the 19th Century, it was thought that maybe results in electrodynamics would not be invariant under the Galilean transformation.

## The electrostatic force between two charges

If we have two charges which are stationary, they experience a force between them which is given by Coulomb’s law.

$\vec{F}_{C} = \frac{ Q^{2} }{ 4\pi\epsilon_{0}\vec{r}^{2} }$ where $Q$ is the charge of each charge, $r$ is the distance between their centres, and $\epsilon_{0}$ is the permittivity of free space, which determines the strength of the force between two charges which have a charge of 1 Coulomb and are separated by 1 metre.

Coulomb’s law gives us the force between two charges. If the charges are the same sign the force is repulsive, if the charges are opposite in sign the force is attractive.

## Moving charges produce a magnetic field

If charges are moving we have an electric current. An electric current produces a magnetic field. The strength of this field is given by Ampère’s law

$\oint \vec{B} \cdot d\vec{\l} = \mu_{0}I$ where $d\vec{l}$ is the length of the wire, $\vec{B}$ is the magnetic field, $\mu_{0}$ is the permeability of free space and $I$ is the current. So, if the two charges are moving, each will be surrounded by its own magnetic field.

A wire carrying a current produces a magnetic field as given by Ampère’s law.

## The Lorentz force

If the two charges are moving and hence producing magnetic fields around each of them then there will be an additional force between the two charges due to the magnetic field each is producing. This force is called the Lorentz force and is given by the equation

$\vec{F}_{L} = Q\vec{v}\times\vec{B}$. If $r$ is the distance between the two wires, and they are carrying currents $I_{1}$ and $I_{2}$ respectively, and are separated by a distance $r$, we can write $B=\frac{\mu_{0}I}{2\pi r}$ which then gives us that the Lorentz force $F_{L} = \frac{ I_{1} \Delta L \mu_{0} I_{2} }{2 \pi r }$ and so the Lorentz force per unit length due to the magnetic field in the other wire that each wire feels is given by $\boxed{ \frac{ F_{L} }{\Delta L} = \frac{ \mu_{0} I_{1} I_{2} }{ 2 \pi r} }$. Writing the currents in terms of the rate of motion of the charges, we can write this as

$F_{L} = \frac{ \mu_{0} Q_{1} Q_{2} }{ 4\pi r^{2} } v^{2}$

The Lorentz force is the force on a wire due to the magnetic field produced in the other wire from the current flowing in it.

## Putting it all together

Let us suppose the two charges are sitting on a table in a moving train. This would mean that someone on the train moving with the charges would measure a different force between the two charges (just the electrostatic force) compared to someone who was on the ground as the train went past (the electrostatic force plus the Lorentz force).

The force measured on one of the charges by the person on the train, for whom the charges are stationary, which we shall call $F$ will be

$F = \frac{ Q_{1}Q_{2} }{ 4 \pi \epsilon_{0}r^{2} }$.

The force measured on one of the charges by the person on the ground, for whom the charges are moving with a velocity $v$, which we shall call $F^{\prime}$ will be

$F^{\prime} = \frac{ Q_{1}Q_{2} }{4 \pi \epsilon_{0}r^{2} } + \frac{ \mu_{0} Q_{1} Q_{2} }{ 4\pi r^{2} } v^{2}$.

These two forces are clearly different, and so it would seem that the laws of Electrodymanics are not invariant under a Galilean transformation, or to put it another way that one would be able to measure the force between the two charges to see if one were at rest or moving with uniform motion because the forces differ in the two cases.

As I will explain in a future post, Einstein was not happy with this idea. He believed that no experiment, be it mechanical or electrodynamical, should be able to distinguish between a state of rest or of uniform motion. His solution to this problem, On the Electrodynamics of Moving Bodies, was published in 1905, and led to what we now call his Special Theory of Relativity. This theory revolutionised our whole understanding of space and time.

## James Clerk Maxwell’s statue

In May I was in Edinburgh to compete in the Edinburgh marathon. On the day after the marathon I did a sight-seeing tour of Edinburgh. One of the things I saw was a statue to the Scottish mathematical physicist James Clerk Maxwell. The statue is at the Saint Andrew Square end of George Street, abut 300 metres from the famous Princes Street.

James Clerk Maxwell(1831-1879).

The statue of James Clerk Maxwell, which is at the Saint Andrew Square end of George Street.

James Clerk Maxwell was an important physicist and mathematician. His most prominent achievement was to formulate the equations of classical electromagnetic theory. These four equations are known as Maxwell’s equations. They are shown on a small plaque at the rear of the statue’s plinth.

The rear of the statue’s plinth. The larger plaque is illustrated in the bottom photograph. Below this is a small plaque with Maxwell’s four famous equations of electromagnetism.

Maxwell’s four equations, which I have written out below.

$\boxed{ \begin{array}{lcll} \nabla \cdot \vec{D} & = & \rho & (1) \\ & & & \\ \nabla \cdot \vec{B} & = & 0 & (2) \\ & & & \\ \nabla \times \vec{E} & = & - \frac{\partial \vec{B}}{\partial t} & (3) \\ & & & \\ \nabla \times \vec{H} & = & - \frac{\partial \vec{D}}{\partial t} + \vec{J} & (4) \end{array} }$

These equations are written in differential form, where the symbol $\nabla$ is known as the vector differential operator. I will explain the mathematics of vector differential operator, and the meaning of each equation, in a series of future blogs.

The four equations can also be written in integral form, which many people find easier to understand. In integral form, the equations become

$\boxed{ \begin{array}{lcll} \iint_{\partial \Omega} \vec{D} \cdot d\vec{S}& = & Q_{f}(V) & (5) \\ & & & \\ \iint_{\partial \Omega} \vec{B} \cdot d\vec{S} & = & 0 & (6) \\ & & & \\ \oint_{\partial \Sigma} \vec{E} \cdot d\vec{\l} & = - & \iint_{\Sigma} \frac{\partial \vec{B} }{\partial t} \cdot d\vec{S} & (7) \\ & & & \\ \oint_{\partial \Sigma} \vec{H} \cdot d\vec{l} & = & I_{f} + \iint_{\Sigma} \frac{\partial \vec{D} }{\partial t} \cdot d\vec{S} & (8) \end{array} }$

The inscription on the front of the statue’s plinth. It reads “James Clerk Maxwell 1831-1879”.

The larger plaque on the back of the plinth.