Feeds:
Posts

## Derivation of Planck’s radiation law – part 3

As I have outlined in parts 1 and 2 of this series (see here and here), in the 1890s, mainly through the work of the Physikalisch-Technische Reichsanstalt (PTR) in Germany, the exact shape of the blackbody spectrum began to be well determined. By mid-1900, with the last remaining observations in the infrared being completed, its shape from the UV through the visible and into the infrared was well determined for blackbodies with a wide range of temperatures.

I also described in part 2 that in 1896 Wilhelm Wien came up with a law, based on a thermodynamical argument, which almost explained the blackbody spectrum. The form of his equation (which we now know as Wien’s distribution law) is
$\boxed{ E_{ \lambda } d \lambda = \frac{ A }{ \lambda ^{5} } e^{ -a / \lambda T } d \lambda }$

Notice I said almost. Below I show two plots which I have done showing the Wien distribution law curve and the actual blackbody curve for a blackbody at a temperature of $T=4000 \text{Kelvin}$. As you can see, they are not an exact match, the Wien distribution law fails on the long-wavelength side of the peak of the blackbody curve.

Comparison of the Wien distribution law and the actual blackbody curve for a blackbody at a temperature of $T=4000 \text{Kelvin}$. Although they agree very well on the short wavelength side of the peak, the Wien law drops away too quickly on the long-wavelength side compared to the observed blackbody spectrum.

A zoomed-in view to highlight the difference between the Wien distribution law and the actual blackbody curve for a blackbody at a temperature of $T=4000 \text{Kelvin}$. Although they agree very well on the short wavelength side of the peak, the Wien law drops away too quickly on the long-wavelength side compared to the observed blackbody spectrum.

## Planck’s “act of desperation”

By October 1900 Max Planck had heard of the latest experimental results from the PTR which showed, beyond any doubt, that Wien’s distribution law did not fit the blackbody spectrum at longer wavelengths. Planck, along with Wien, was hoping that the results from earlier in the year were in error, but when new measurements by a different team at the PTR showed that Wien’s distribution law failed to match the observed curve in the infrared, Planck decided he would try and find a curve that would fit the data, irrespective of what physical explanation may lie behind the mathematics of the curve. In essence, he was prepared to try anything to get a fit.

Planck would later say of this work

Briefly summarised, what I did can be described as simply an act of desperation

What was this “act of desperation”, and why did Planck resort to it? Planck was 42 when he unwittingly started what would become the quantum revolution, and his act of desperation to fit the blackbody curve came after all other options seemed to be exhausted. Before I show the equation that he found to be a perfect fit to the data, let me say a little bit about Planck’s background.

## Who was Max Planck?

Max Karl Ernst Ludwig Planck was born in Kiel in 1858. At the time, Kiel was part of Danish Holstein. He was born into a religious family, both his paternal great-grandfather and grandfather had been distiguished theologians, and his father became professor of constitutional law at Munich University. So he came from a long line of men who venerated the laws of God and Man, and Planck himself very much followed in this tradition.

He attended the most renowned secondary school in Munich, the Maximilian Gymnasium, always finishing near the top of his class (but not quite top). He excelled through hard work and self discipline, although he may not have had quite the inherent natural ability of the few who finished above him. At 16 it was not the famous taverns of Munich which attracted him, but rather the opera houses and concert halls; he was always a serious person, even in his youth.

In 1874, aged 16, he enrolled at Munich University and decided to study physics. He spent three years studying at Munich, where he was told by one of his professors ‘it is hardly worth entering physics anymore’; at the time it was felt by many that there was nothing major left to discover in the subject.

In 1877 Planck moved from Munich to the top university in the German-speaking world – Berlin. The university enticed Germany’s best-known physicist, Herman von Helmholtz, from his position at Heidelberg to lead the creation of what would become the best physics department in the world. As part of creating this new utopia, Helmholtz demanded the building of a magnificient physics institute, and when Planck arrived in 1877 it was still being built. Gustav Kirchhoff, the first person to systematically study the nature of blackbody radiation in the 1850s, was also enticed from Heidelberg and made professor of theoretical physics.

Planck found both Helmholtz and Kirchhoff to be uninspring lecturers, and was on the verge of losing interest in physics when he came across the work of Rudolf Clausius, a professor of physics at Bonn University. Clausius’ main research was in thermodynamics, and it is he who first formulated the concept of entropy, the idea that things naturally go from order to disorder and which, possibly more than any other idea in physics, gives an arrow to the direction of time.

Planck spent only one year in Berlin, before he returned to Munich to work on his doctoral thesis, choosing to explore the concept of irreversibility, which was at the heart of Claussius’ idea of entropy. Planck found very little interest in his chosen topic from his professors in Berlin, and not even Claussius answered his letters. Planck would later say ‘The effect of my dissertation on the physicists of those days was nil.’

Undeterred, as he began his academic career, thermodynamics and, in particular, the second law (the law of entropy) became the focus of his research. In 1880 Planck became Privatdozent, an unpaid lecturer, at Munich University. He spent five years as a Privatdozent, and it looked like he was never going to get a paid academic position. But in 1885 Gottingen University announced that the subject of its prestigoius essay competition was ‘The Nature of Energy’, right up Planck’s alley. As he was working on his essay for this competition, he was offered an Extraordinary (assistant) professorship at the University of Kiel.

Gottingen took two years to come to a decision about their 1885 essay competition, even though they had only received three entries. They decided that no-one should receive first prize, but Planck was awarded second prize. It later transpired that he was denied first prize because he had supported Helmholtz in a scientific dispute with a member of the Gottingen faculty. This brought him to the attention of Helmholtz, and in November 1888 Planck was asked by Helmholtz to succeed Kirchhoff as professor of theoretical physics in Berlin (he was chosen after Ludwig Boltzmann turned the position down).

And so Planck returned to Berlin in the spring of 1889, eleven years after he had spent a year there, but this time not as a graduate student but as an Extraordinary Professor. In 1892 Planck was promoted to Ordinary (full) Professor. In 1894 both Helmholtz and August Kundt, the head of the department, died within months of each other; leaving Planck at just 36 as the most senior physicist in Germany’s foremost physics department.

Max Planck who, in 1900 at the age of 42, found a mathematical equation which fitted the entire blackbody spectrum correctly.

As part of his new position as the most senior physicist in the Berlin department, he took over the duties of being adviser for the foremost physics journal of the day – Annalen der Physik (the journal in which Einstein would publish in 1905). It was in this role of adviser that he became aware of the work being done at PTR on determining the true spectrum of a blackbody.

Planck regarded the search for a theoretical explanation of the blackbody spectrum as nothing less than the search for the absolute, and as he later stated

Since I had always regarded the search for the absolute as the loftiest goal of all scientific activity, I eagerly set to work

When Wien published his distribution law in 1896, Planck tried to put the law on a solid theoretical foundation by deriving it from first principles. By 1899 he thought he had succeeded, basing his argument on the second law of thermodynamics.

## Planck finds a curve which fits

But, all of this fell apart when it was shown conclusively on the 2nd of February 1900, by Lummer and Pringsheim of the PTR, that Wien’s distribribution law was wrong. Wien’s law failed at high temperatures and long wavelengths (the infrared); a replacement which would fit the experimental curve needed to be found. So, on Sunday the 7th of October, Planck set about trying to find a formula which would reproduce the observed blackbody curve.

He was not quite shooting in the dark, he had three pieces of information to help him. Firstly, Wien’s law worked for the intensity of radiation at short wavelengths. Secondly, it was in the infrared that Wien’s law broke down, at these longer wavelengths it was found that the intensity was directly propotional to the temperature. Thirdly, Wien’s displacement law, which gave the relationship between the wavelength of the peak of the curve and the blackbody’s temperature worked for all observed blackbodies.

After working all night of the 7th of October 1900, Planck found an equation which fitted the observed data. He presented this work to the German Physical Society a few weeks later on Friday the 19th of October, and this was the first time others saw the equation which has now become known as Planck’s law.

The equation he found for the energy in the wavelength interval $d \lambda$ had the form
$\boxed{ E_{\lambda} \; d \lambda = \frac{ A }{ \lambda^{5} } \frac{ 1 }{ (e^{a/\lambda T} - 1) } \; d\lambda }$

(compare this to the Wien distribution law above).

After presenting his equation he sat down; he had no explanation for why this equation worked, no physical understanding of what was going on. That understanding would dawn on him over the next few weeks, as he worked tirelessly to explain the equation on a physical basis. It took him six weeks, and in the process he had to abandon some of the ideas in physics which he held most dear. He found that he had to abandon accepted ideas in both thermodynamics and electromagnetism, two of the cornerstones of 19th Century physics. Next week, in the fourth and final part of this blog-series, I will explain what physical theory Planck used to explain his equation; the theory which would usher in the quantum age.

## Derivation of Planck’s radiation law – part 2

In the first part of this blog (here), I described how experimenters at the Physikalisch-Technische Reichsanstalt (PTR) determined the true spectrum of blackbody radiation during the 1890s, By the year 1900, primarily by the work of Heinrich Rubens, Ferdinand Kurlkbaum, Ernst Pringsheim and Otto Lummer, the complete spectrum, from the ultraviolet through the visible and into the infrared, was known for the very first time. As the true shape of the blackbody spectrum started to emerge from this experimental work, theoreticians tried to find a theory to explain it.

The first to meet with any success was Wilhem Wien. As I mentioned in the first part of this blog, in 1893 he came up with his displacement law, which gave a very simple relationship between the wavelength of the peak of the spectrum and its temperature.

$\lambda_{peak} = \frac{ 0.0029 }{ T }$

where $\lambda_{peak}$ is the wavelength of the peak in metres, and $T$ is expressed in Kelvin.

By 1896 Wien had come up with a theory to explain the shape of the spectrum (even though the shape in the infrared was not fully known at that time). In what we now call ‘Wien’s distribution law’ or ‘Wien’s approximation’, he tried to explain the blackbody spectrum using thermodynamic arguments, and assuming that the gas molecules obeyed the Maxwell-Boltzmann speed distribution for molecules (or atoms) in a gas. I will not derive that explanation here, but if any readers wish me to derive it I can do so at a later date.

Wilhelm Wiens, who in 1893 came up with Wiens displacement law, and in 1896 with the Wien distribution.

## Wien’s distribution law (1896)

What Wien suggested was that the energy of a black body in the wavelength interval $d \lambda$ was given by

$E_{ \lambda } d \lambda = \frac{ A }{ \lambda ^{5} } f( \lambda T) d \lambda$

Wien found, using the Maxwell-Boltzmann distribution law for the speed of atoms (or molecules) in a gas, that the form of the function $f( \lambda T)$ was

$f( \lambda T ) = e^{ -a / \lambda T }$

and so

$\boxed{ E_{ \lambda } d \lambda = \frac{ A }{ \lambda ^{5} } e^{ -a / \lambda T } d \lambda }$

where $A \text{ and } a$ were constants to be determined.

If we wish to express this in terms of frequency $\nu$ instead of wavelength $\lambda$ then we need to remember that, from the wave equation, $c = \nu \lambda$ and so $\lambda = c/\nu$. But, we also need to rewrite $d\lambda$ in terms of $d\nu$ and to do this we write

$\nu = \frac{ c }{ \lambda } \rightarrow d \lambda = \frac{ -c }{ \nu^{2} }\; d \nu$

We can ignore the minus sign as it is just telling us that as the frequency increases the wavelength decreases, and so substituting for $\lambda \text{ and } d\lambda$ we can write
that the energy in the frequency interval $d \nu$ is given by

$E_{\nu} d \nu = \frac { A \nu^{5} } { c^{5} } e^{ -a \nu / cT } \frac{ c }{ \nu^{2} } d \nu$

$\boxed{ E_{\nu} d \nu = A^{\prime} \nu^{3} e^{ -a^{\prime} \nu / T } d \nu }$

where $A^{\prime} \text{ and } a^{\prime}$ are also just constants to be determined.

## Wien’s ‘law’ breaks down

As I will show next week, Wien’s distribution law gave good (but not perfect) agreement with the blackbody curve on the short-wavelength side of the peak (what we now call the ‘Wien-side’ of the peak). But, as experimental results on the long-wavelength side started to emerge from the PTR, it became clear that his ‘law’ did not work on that side; it broke down on the long-wavelength side and showed very poor agreement with the actual observed curve.

Next week, in part 3 of this blogpost, I will also describe how and why Planck got involved in the problem, and what the solution he concocted was; the law which would correctly describe the blackbody spectrum and usher in the quantum age.

## Derivation of Planck’s radiation law – part 1

One of my most popular blogposts is the series I did on the derivation of the Rayleigh-Jeans law, which I posted in three parts (part 1 here, part 2 here and part 3 here). I have had many thousands of hits on this series, but several people have asked me if I can do a similar derivation of the Planck radiation law, which after all is the correct formula/law for blackbody radiation. And so, never one to turn down a reasonable request, here is my go at doing that. I am going to split this up into 2 or 3 parts (we shall see how it goes!), but today in part 1 I am going to give a little bit of historical background to the whole question of deriving a formula/law to explain the shape of the blackbody radiation curve.

## ‘Blackbody’ does not mean black!

When I first came across the term blackbody I assumed that it meant the object had to be black. In fact, nothing could be further from the truth. As Kirchhoff’s radiation laws state

A hot opaque solid, liquid, or gas will produce a continuum spectrum

(which is the spectrum of a blackbody). The key word in this sentence is opaque. The opaqueness of an object is due to the interaction of the photons (particles of light) with the matter in the object, and it is only if they are interacting a great deal (actually in thermal equilibrium) that you will get blackbody radiation. So, examples of objects which radiate like blackbodies are stars, the Cosmic Microwave Background, (which is two reasons why astronomers are so interested in blackbody radiation), a heated canon ball, or even a canon ball at room temperature. Or you and me.

Kirchhoff’s 3 radiation laws, which he derived in the mid-1800s

Stars are hot, and so radiate in the visible part of the spectrum, as would a heated canon ball if it gets up to a few thousand degrees. But, a canon ball at room temperature or you and me (at body temperature) do not emit visible light. But, we are radiating like blackbodies, but in the infrared part of the spectrum. If you’ve ever seen what people look like through a thermal imaging camera you will know that we are aglow with infrared radiation, and it is this which is used by Police for example to find criminals in the dark as the run across fields thinking that they cannot be seen.

The thermal radiation (near infrared) from a person. The differences in temperature are due to the surface of the body having different temperatures in different parts (e.g. the nose is usually the coldest part).

Kirchhoff came up with his radiation laws in the mid-1800s, he began his investigations of continuum radiation in 1859, long before we fully knew the shape (spectrum) of a blackbody.

## Germans derive the complete blackbody spectrum

We actually did not know the complete shape of a blackbody spectrum until the 1890s. And the motivation for experimentally determining it is quite surprising. In the 1880s German industry decided they wanted to develop more efficient lighting than their British and American rivals. And so they set about deriving the complete spectrum of heated objects. In 1887 the German government established a research centre, the Physikalisch-Technische Reichsandstalt (PTR) – the Imperial Institute of Physics and Technology, one of whose aims was to fully determine the spectrum of a blackbody.

PTR was set up on the outskirts of Berlin, on land donated by Werner von Siemens, and it took over a decade to build the entire facility. Its research into the spectrum of blackbodies began in the 1890s, and in 1893 Wilhelm Wien found a simple relationship between the wavelength of the peak of a blackbody and its temperature – a relationship which we now call Wien’s displacement law.

Wien’s displacement law states that the wavelength of the peak, which we will call $\lambda_{peak}$ is simply given by

$\lambda_{peak} = \frac{ 0.0029 }{ T }$

if the temperature $T$ is expressed in Kelvin. This will give the wavelength in metres of the peak of the curve. That is why, in the diagram below, the peak of the blackbody shifts to shorter wavelengths as we go to higher temperatures. Wien’s displacement law explains why, for example, an iron poker changes colour as it gets hotter. When it first starts glowing it is a dull red, but as the temperature increases it becomes more yellow, then white. If we could make it hot enough it would look blue.

The blackbody spectra for three different temperatures, and the Rayleigh-Jeans law, which was behind the term “the UV catastrophe”

By 1898, after a decade of experimental development, the PTR had developed a blackbody which reached temperatures of 1500 Celsius, and two experimentalists working there Enrst Pringsheim and Otto Lummer (an appropriate name for someone working on luminosity!!) were able to show that the blackbody curve reached a peak and then dropped back down again in intensity, as shown in the curves above. However, this pair and others working at the PTR were pushing the limits of technology of the time, particularly in trying to measure the intensity of the radiation in the infrared part of the spectrum. By 1900 Lummer and Pringsheim had shown beyond reasonable doubt that Wien’s ad-hoc law for blackbody radiation did not work in the infrared. Heinrich Rubens and Ferdinand Kurlbaum built a blackbody that could range in temperature from 200 to 1500 Celsius, and were able to accurately measure for the first time the intensity of the radiation into the infrared. This showed that the spectrum was as shown above, so now Max Planck knew what shape curve he had to find a formula (and hopefully a theory) to fit.

In part 2 next week, I will explain how he went about doing that.